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TECHNICAL MEMORANDUM X-53644

AN ALGORITHM FOR THE DETERMINATION OF THE
DEFINITENESS OF A REAL SQUARE MATRIX

SUMMARY

An algorithm is described whereby the definiteness property of a
real square matrix may be easily computed. The technique is based on
well known theorems of matrix algebra which have been modified slightly
to permit easy manual or machine computation.

A FORTRAN program using the algorithm was written and was run on
both the IBM 1130 and the SDS 930 digital computers. The computation
time for a 7 x 7 matrix was approximately ome second on the IBM 1130
and much less than one second on the SDS 930.

I. INTRODUCTION

Many engineering problems require the determination of that pro-
perty of a real square matrix known as its definiteness. Such problems
include Lyapunov stability theory in which the definiteness of both the
V function and its time derivative are required, the determination of
the positive definiteness of the solution of the matrix Riccati equation
from optimal control theory, and the determination of the definiteness
of network functions in the realm of network synthesis.

The definiteness property of a real square matrix is actually a
property of the associated quadratic form; however, as the quadratic
form is uniquely specified by the matrix, we ascribe definiteness to
either the form or the matrix.

Most often we find the necessary and sufficient conditions for the
various classes of definiteness to be stated as follows:

(1) A matrix is positive definite if and only if all of its
leading principal minors are positive.

(2) A matrix is positive semi-definite if and only if all of
its principal minors are non-negative.



(3) A matrix is negative definite if and only if all of its
leading principal minors are non-zero and alternate in sign, the first
order minor being negative. Alternatively, a matrix is negative definite
if the negative of the matrix is positive definite.

(4) A matrix is negative semi-definite if and only if all
principal minors which are non-zero alternate in sign; i.e., the first
order minors are all negative, the second order minors are all positive,
etc. Alternatively, a matrix is negative semi-definite if the negative
of the matrix is positive semi-definite.

(5) A matrix which does not belong to one of the above cate-
gories is called indefinite.

We propose that a computationally more usable definition is based on
the definiteness of a diagonal matrix congruent to the symmetric equiva-
lent of the original matrix. The computation necessary to determine the
congruent form is approximately the same as that required to evaluate a
determinant of order equal to the rank of the original matrix. Once
the diagonal matrix is computed, the definiteness property is ascertained
by inspection of the signs of the diagonal terms.

The remainder of this paper is divided into three major sections.
The first section is a non-formal proof of the technique used, the
second describes the computational algorithm, and the last section is
an appendix which includes a worked example and a FORTRAN program
written for the SDS 930 digital computer. The FORTRAN program will
determine the definiteness of any real square matrix up to order
10 x 10 as presently written and may be easily converted into a sub-
routine for use with other programs.

II. PROOF OF THE TECHNIQUE

We wish to show that, given any real square symmetric matrix A
having a quadratic form defined by

n n
= < X X = 1
Q X, A X> }z a4 X, xj (1)
i=1l j=1
where
x is an nth order column vector of variables

A is an n Xn real square symmetric matrix,




we may determine a diagonal matrix D, related to A by a non-singular
transformation, which has a quadratic form covering the same range of
values, This matrix will be shown to be unique and to have the form
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Q(n-r) xq: Q(n-r) x (r=-q) :—-(n-r) x (n-r)

where
n is the order of the matrix A
r is the rank of the matrix A
q is the index of the matrix A
I is a q x q identity matrix
=q
i is an (r - q) x (r - q) identity matrix

0. . is an i X j null matrix.
=i Xj

We may then examine the quadratic form of D which appears as

=<y Dy>e ) ) ®
i=1j=1

for its definiteness instead of equation (1). The definiteness of (3)
is readily determined by inspection, We first expand (3) into

2 - 2 - - 2
Y .. - y2 (&)

= y2 2 2 _
=y " +y;+ ..ty -y gtz " r



We may now see that the following conditions are true:
(1) Q* is positive definite if and only if q = r = n.
(2) Q* is positive semi-definite if and only if q = r < n.
(3) Q* is negative definite if and only if q = 0 and r = n,
(4) Q* is negative semi-definite if and only if q = 0 and r < n.
(5) Q* is indefinite if q # 0 and q # r.

Now since the form of (4) covers the same range of values as that
of (1), the statements as to the definiteness of (4) hold also for (1).

Our problem now becomes one of showing that such a D matrix exists
for all real square A matrices and that it is unique; i.e., q and r are
unique. To do this we will divide our proof into four parts, 1In the
first we will show that the quadratic forms of two matrices related by
a non-singular transformation cover the same range of values. Next we
show that the quadratic form of any real square matrix may be considered
to be the quadratic form of a real symmetric matrix of the same order,
and thus, without loss of generality, we may consider our matrix to
be symmetric in all cases. 1In the third part we will show that, given
a symmetric matrix A, we may always find the diagonal form of equation
(2) by a non-singular transformation on A, e.g., D = P' A P where P is
non-singular and ' denotes the transpose. Finally, we prove that the
D so obtained is unique,

A. Quadratic Forms of Matrices Related by
Non-Singular Transformations

In this section we wish to show that two matrices related by a
non-singular transformation of the form

B=P AP, (5)

where P is an n X n non-singular matrix, have quadratic forms covering
the same range of values. We first consider the quadratic form of 4,

(6)
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Next, consider the following variable transformation:

X=PYy )

where
P is an n X n non-singular matrix.

Substitution of (7) into (6) yields

Q=<Py,ARPy>=<y,P ARy>, (8)

which by (5) is the quadratic form of B:

Q=<y,By>. . 9)

Now, for any y yielding a value of Q = Q; in (9), we may obtain a
unique x from (7) yielding the same value of Q = Q; from (6). There-
fore, the quadratic forms of two matrices which are related by the
transformation of (5) cover identical ranges.

B. Equivalent Symmetric Matrix

In this section we show that the quadratic form of any real square
matrix, A may be considered to be the quadratic form of a real symmetric
matrix § related to A by

| 1
| S5=3@+a" (10)
where
S is a symmetric matrix of nth order.
Equation (10) may also be written
(5, =3 (a,, +a,) 1)
ij 2 ij ji’?



or

where
Sij is an element of S

aij is an element of A

Consider the quadratic form of A
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Substitution of (11) into (16) yields

n n
Q= Z Zsij X, xj. (17)
i=1 j=1

Therefore, the quadratic forms of (12) and (17) are identical.
Considering this, we see that we may always assume our A matrix to be
symmetric without loss of generality. If we wish to apply the techniques
developed in the following sections to a non-symmetric matrix, we simply
obtain the equivalent symmetric form by equation (10) and proceed.

C. Determination of Diagonal Matrix D
Now, we wish to show that, given a symmetric matrix A, we may
always obtain a diagonal matrix D as defined by equation (2) through

a non-singular transformation.

In constructing our proof, we shall require use of the following
three elementary operations:

(1) 1interchange of two columns (rows),
(2) multiplication of a column (row) by a constant,

(3) mnmultiplication of a column (row) by a constant followed
by addition of that column (row) to another column (row).

The column operations may be performed by postmultiplying the
matrix A by one of the following defined elementary transformation
matrices:

- i J —
I [} 1 1] )
S TN IR R
i ] 0 ] i 1 ]
Y I ISR I B
E, = ! N ! , det E; = -1
- SRR S T IO IS -
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(equation (18) continued on next page)
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Postmultiplication of A by one of the elementary transformation
matrices performs a column operation, while premultiplication of A by
the transpose of the elementary transformation matrix results in the
equivalent row operation. All of these transformation matrixes are
obviously non-singular, and any matrix formed from a product of such
non-singular matrices is also non-singular, That is, the determinant
of such a product is equal to the product of the determinants which,
being non-zero, indicates that the product matrix is non-singular.

We will now show that a symmetric matrix A may be reduced to the
form of D. Consider first that the matrix A has a non-zero diagonal
element. This element is moved to the a,; location by a column inter-
change and a row interchange. Of course, if the a,; location is non-zero
initially, the row and column interchanges are unnecessary. We next
multiply column one and row one by 1/N'|a,;|. This operation results in
a plus one or a minus one in the a;; location. If the first row is next
multiplied by =-as,/+~a,; and added to the second, we may obtain a zero
in the ap; location, Similarly, multiplication of the first column by
the same value and addition of this column to the second results in a
zero in the a;- location. Proceeding in a similar fashion, we may zero
all of the elements of the first row and of the first column except for
the a;; location which remains at plus or minus one. Our matrix is now
of the form




¢ s (19)

where R is the product of the required elementary transformation matrices
and € is an (n - 1) X (n - 1) reduced matrix.

The procedure outlined above may be repeated to reduce C, and so
on, until a diagonal form is attained.

A difficulty which may be encountered in this process is the case
where all diagonal elements are zero at some point in the reduction,
but there are non-zero off-diagonal elements. This case may be handled
in the following manner., Assume that a non-zero off-diagonal element
is found at ajy. Of course, since the matrix is symmetric, there will
be an identicai element at ajj. We may add column j to column i and
then add row j to row i to form a main diagonal element at aj; which
has the value ajj + aj; = 2ajj. We may now proceed as before. This
is the technique used” in the program as written so that a form as
defined by (2) is obtained. It may be shown that a matrix having an
- element at ajj but no element at ajj is indefinite., This may be seen
if we assume that we set all of the elements of x equal to zero except
for x;j and xjy. The quadratic form will become

= 2
Q=ay; xp *+ 2% X, (20)

from which it is obvious that given any x; we may always choose a value
of x; to make Q either positive or negative as we wish, Therefore, if
we encounter this characteristic at any point in the reduction the
matrix is indefinite,

In case we find no diagonal nor off-diagonal non-zero elements,
our procedure is terminated as we have obtained the desired congruent
form.



From the foregoing discussion, we can see that a diagonal form so
defined by (2) may be obtained for all cases. We must next determine
whether or not the form so attained is unique; that is, does it have
the same rank and index regardless of the sequence of elementary opera-
tions used. We will consider this problem in two parts. First we will
show that the rank so attained is unique and second that the index is
also unique.

D. Proof of the Uniqueness of D

We next show that the rank of D is equal to the rank of A under
the congruent transformation D = P' A P. Let the matrix A be written

Ial as ... ar(cllal + cojas + ... crlar) ce

T (Cl(n-r)al + Cz(n-r)a2 oot Cr(n-r)ar)l (21)

where a; is one of r independent columns of A and the clJ s are p con-
stants used to form the remaining (n - r) dependent columns of A.

Consider the product,

<pi,a;> <pi1,az> ... <Pr,ap> <Pi,(cija;+cpast... + Crlar)>
+ +... >
e pl’(cl(n-r)al Cz(n-r)az r(n-r) r)
<pz,ar> <Ppras> ... <Ppyap> Ppo,(cjaztcegiazt... + crlar)>
+... F a_)>
P'A=3B-= e <P2’(C1(n r)?1 (n-r)?2 r (n-r) r)
<Pp31> <P ,a2> ... <P, »3,> <pn,(cllal-+cgla2-+...+ crlar)>
+ +...+ ¢ a )>
T <pn’(cl(n-r)al C2(n-r)?2 r(n-r) )
(22)

10




where the pi's are columns of P. Expanding the n - r columns on the
right our matrix becomes

ser cln-r<Pl,al> + czn_r<pl,a2> +...+ Crn

<pn,al> <pn,a2> <pn,ar> Ci3 <pn,al> + co; <pn,a2> +...+ ¢

ril

c
in=-r

(23)

from which it is obvious that the rank of P' A is at most r, the rank
of A.

Now, since P' is non-singular, we may write

A

"
A
fo

(24)

where

B=P'A

Following the procedure outlined above, we can see that the rank
of A is at most that of B and thus the rank of B must equal that of A.

The same procedure may also be followed to show that the product
P' AP=(R' A) P=3B P has the rank of B or, from our previous proof,
‘the rank of A.

a
-r P12,

a>+ ¢ a +...+ ¢
P2s2y on-r P2,32> ro-r P22,

<p

<pl’al> <Pl,az> s <Pl,ar> cll <Pl,al> + C21 <Pl,8.2> +,...+ Cr1<pl,ar>

>

P2,31> P2,82> ... P2,a.> €1y P2a> + €2y Paazx> Fe.ot C <Ppoya >

>

a
n’'r

+ cee
Ppodr> ¥ € Pprd> tet o Ppea>

11




To conclude the proof of uniqueness, we need to show that the index
of D is unique regardless of the sequence of elementary transformations
used to obtain D. Consider that there are two transformations on A
yielding two matrices, D; and Do, having the same rank but different
indices., That is,

PPAPRP=D; (25)
and
R' AR =Dy,
where P and R are non-singular transformation matrices.
Now let
x=Ekx
and (26)
X =Rz

For the first case our quadratic form becomes

Q=<x,Ax>=<yPR APy>

<Y PPARPYy>=<y Diy> (27)

and for the second it becomes
Q=<%x Ax>=<zR, ARy>=<z, R ARz>=<z Doz >. (28)

We will assume that the index of D; is equal to q and that the index of
Do is equal to p and q # p. Our quadratic forms given by (27) and (28)
may be rewritten as

2 2

2 2 2
q‘yl+y2+-..+yq-yq+l_a.--yr (29)

12




and

2 2 2 2 2
= + + ... + - - ... - .
Q=27+ 25 zp zp+l z (30)

It is simply a matter of notation to assume that q < p., We now
write the following homogeneous set of equations:

31)

We have a set of q + n - p < n equations in n unknown x4's, and thus a
non-trivial solution exists. That is, x = x* # 0 is a solution of (31).
We may also compute

2~

prept

2k = gfl x*,

(32)

From (29) and (31) Q £ O but from (30) and (31) Q = 0 and thus
Q = 0. Observing (27) and (28), we see that this is only possible if
y* = z¥ = 0, but from (32) and the fact that a non-trivial solution to
(31) exists, we see that this is not the case.

The foregoing contradictions arise from our assumption that p < q
and since we arrive at the same contradictions if we assume q < p, we
see that p = q and D; = D,. Therefore, our congruent form is unique,
and the sequence of application of elementary transform pairs is
imma terial.

III, COMPUTATIONAL ALGORITHM

The congruent diagonal matrix D may be computed without developing
the transformation matrices directly. The procedure used will be the
following:

Step 1. We form the equivalent symmetric matrix from our
given matrix using the algorithm

13



1
Sij =3 (aij + aji)’ (33)

where Sij is an element of the symmetrized matrix.

NOTE: In the remainder of the algorithm elements of all
matrices will be referred to by ajj rather than Sij'

Step 2. The main diagonal is searched for the element with
the largest magnitude. This element is moved to the a,;; location by
a row and column interchange. We work with the largest element to
reduce as much as possible numerical computational errors. If a main
diagonal element is zero, then off-diagonal locations are searched for
a non-zero element. If we do find a non-zero element, then the matrix
is indefinite as was shown previously; however, we continue to obtain
the matrix D. Let us assume that the non-zero element is located at
ajjs then, we add column j to column i and row j to row i to form a
non-zero aj; = Zaij.

If all main diagonal elements are zero and all off-diagonal
elements are also zero, then we have obtained the desired form of D
and the procedure is halted.

Assuming that a non-zero a,; has been obtained, we divide the
first row by the magnitude of that element; i.e.,

It
—

alj = alj/|a11| j 3 seey 1D, (34)

Step 3. Next, we apply the following algorithm to the remain-
ing n - 1 rows:

a,, =a,, =-a,_ *ajz;-a_, i=2, ..., n (35)

This zeroes all of the first column except for a;; which remains *1 and
modifies the remainder of the lower triangular portion of the matrix.

Step 4. The matrix is next resymmetrized by applying the
following:

- 36
a]._j ji s ., D 1 (36)

14




The preceding four steps are equivalent to applying several elemen-
tary transformations, and at the end we are left with a matrix such as
that of (19).

Next, we recycle through steps 2, 3, and 4 as applied to the reduced
matrix (C of equation (19)). The process is continued until the matrix
D is obtained. Our matrix D will not necessarily have all of the +l's
grouped together and all of the -1's grouped together as indicated by
(2), but this, while unnecessary, could be affected by row-row and
column-column interchanges.

Step 5. The final procedure is to search the main diagonal of
D, counting the number of +1's and the number of -1's. The following
rules are then applied to obtain the definiteness of the matrix D and,
through it, the definiteness of the matrix A.

(1) 1If the number of +l's is equal to the order, n, of
A, then the matrix is positive definite.

(2) 1If the number of +1's is less than the order, n, and
there are no -1's, then the matrix is positive semi-
definite. This also includes the case where there
are no +l's,

(3) If the number of -1's is equal to the order, n, of A
then the matrix is negative definite,.

(4) If the number of -1's is less than the order, n, and
there are no +1's, then the matrix is negative semi-
definite.

(5) If there are both +l's and ~1's present, then the matrix
is indefinite.

IV, CONCLUSIONS

1. We have proven an algorithm for the computation of the definite-
ness of a real square matrix, While the theorems of matrix algebra used
in the proof are not new, it is believed that the means of obtaining the
matrix D computationally is new and that the technique offers significant
advantagés over the commonly used definition of definiteness as was given
in the introduction to this paper.

2. The algorithm described above has been programmed in FORTRAN

(see appendix B) and run on both the SDS 930 and the IBM 1130 computer.
A seven-by-seven positive definite matrix was run on each machine

15



(a definite matrix was used because this required the maximum computa-
tion for a given matrix size). On the IBM 1130, the computation time
was approximately one second, while on the SDS 930, the output ran at
the maximum printer speed of 640 lines per minute, and thus no computa-
tion times could be measured. However, the time was much less than
one second.

3. Since this technique requires computation roughly equivalent
to that of evaluating a determinant equal to the rank of the matrix, it
should be much faster than any procedure based on successive computation
of minors.

4. 1In addition to determining the definiteness of a matrix, the
congruent form gives the rank of the matrix and also the number of
positive and negative eigenvalues of the symmetric form. The number
of positive and negative eigenvalues corresponds, respectively, to
the number of positive and negative entries on the main diagonal of
the congruent diagonal form. This may be limited in usefulness, how-
ever, since there is no information given about the eigenvalues of the
original non-symmetric matrix.

16




APPENDIX A

Example Problem

Consider the three-by-three matrix

-5 -14 6
A=]| o -13 10(. (37)
-12 0 -2

Step 1. Symmetrizing by equation (33),

-5 -7 -3
oym = |7 -13 -5|. (38)
-3 -5 -2

Step 2. Applying equation (34),

-1 -7/5 -3/5
-7 -13 -5 |, (39)
-3 -5 -2

Step 3. Applying equation (35) to rows two and three,

-1 -7/5 -3/5
0 -16/5 -5 |, (40)
0 -4/5 -1/5

17



Step 4. Applying equation (36),

-1 0 0
0 -16/5 -4/5]. (41)

0 =4/5 -1/5

Reapplying steps 2 through 4 to the reduced (two-by-two) matrix,

Step 2. -1 0 0
0 -1 -1/4f. (42)
0 -4/5 -1/5

Step 3. -1 0 0
0 -1 -1/4]. 43)
0 0 0

Step 4. -1 0 0
0 -1 (0] . (44)
0 0 0

Step 5. Equation (44) is the desired congruent matrix, Since
it is obviously negative semi-definite, the matrix given by equation
(37) is negative semi-definite, Here, we have omitted the main diagonal
search for the largest element since this was not required to illustrate
the method.

18




APPENDIX B

FORTRAN Program Description

Following is listed the FORTRAN program as written for the SDS 930
digital computer. No claim is made that this program is optimally fast;
however, it does run at a speed which should be satisfactory for most
applications,

The program requires as input the order of the matrix and the
elements of the matrix entered row-wise. The output consists of a list-
ing of the original matrix, the symmetrized matrix, the diagonal con-
gruent form, and a comment as to the definiteness of the original matrix.
Occasionally, an output statement "A DIFFERENCE LESS THAN 1,0E-06 WAS
ENCOUNTERED" occurs. This statement implies that, during the computa-
tion, a difference between two numbers was obtained which was less than
1.0 x 10~* percent of the magnitude of one of the numbers. When this
happens, the program considers this difference to be zero and thus
stores zero instead of the computed difference. This helps to eliminate
some errors from truncation, but it is conceivable that such a small dif-
ference would exist, Therefore, problems for which this occurs should
be checked carefully,

The data required for the program should be entered as follows:
(1) The first data card contains the order of the matrix
punched in columns one and two, right justified (FORMAT (I2)). The
maximum size presently allowed is a tenth order matrix.
(2) The remaining data cards contain the elements of the
matrix, entered row-wise, with eight entries per card, each in a field

ten columns wide. The decimals must be punched (FORMAT (8F10.0)).

Upon completion of the run, the program returns to the first
read statement in order to read data for a second computation.

19




BASSIGN S=MT0,SIzCRs/B2=MT1,L0a| Pe
AREWIND MT1.
aFORTRAN B0.L0s

C
C THIS PROGRAM DETERMINES THE DEFINITENESS OF A REAL SQUARE MATRIX

s 2

* 3 C

s 4 DIMENSION A[10,101

] 5 MM a 2

= 6 NN = 3

= 7 C

s 8 C READ IN REAL MATRIX

. 9 C

= 10 802 Kg = 1

] 11 READ 1,N

= i2 1 FORMAT (12)

» 13 READ 2, [[A[1s4)2Jd312N),121,N)
= 14 2 FORMAT ([8F10+.0)

= 15 C

= 16 C WRITE ORIGINAL MATRIX

] 17 C

e 18 PRINT 3

s 19 3 FORMAT (16H1O0RIGINAL MATRIX/]
e 20 DB 100 I=1,N

= 21 100 PRINT &4, [AL1sJ)sJd=1aN]

s 22 4 FORMAT ([8E1547)

] 23 C

= 24 C DETERMINE EQUIVALENT SYMMETRIC FORM
2 25 C

= 26 DB 101 I=l,N

= 27 DO 101 U=1,N

2 28 ALI,J) = [ACLI»J) + ALJL1]Y/2

= 29 101 Atdy 11 = ALI,U]

s 30 C

= 31 C WRITE EQUIVALENT SYMMETRIC FORM

] 32 C

= 33 PRINT 5

= 34 5 FORMAT [17HOSYMMETRIC MATRIX/3
® 35 DO 114 1=1,N

= 36 114 PRINT 4, C(ACIsJ)sdelsN)

= 37 C

= 38 C DETERMINE CONGRUENT FORM

» 33 C

s 40 Do 102 K=1,N

= 41 C

s 42 C LOCATE LARGEST DIAGANAL ELEMENT

= 43 C

= 44 E1G = ABSIA[KNK))

s 45 KK = K

s 46 DB 103 I=KusN

=z 47 IF (ACI»11) 135,130,135

= 48 C ‘
= 49 C IF A ZERD IS ON THE MAIN DIAGONAL CHECK ROW FOR NON=ZERO ELEMENTS
= 50 C
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104

[aN e kel oo [aXe Xl

OoOnn Oono nonNno

O000n

130 DO 131 JsKsN
IF CALI,J)1 132,131,132
131 CONTINUE
GO T 135
132 DO 133 L=KsN
133 ACI,L] = ACILLY + ALLL)
D6 134 L=KsN
134 ACLs11 = ACLsIT + ATLJY
135 IF [ABS[ALI,I1]] - BIG) 103,103,104
104 BIG = ABSIALI,I3)
KK = 1
103 CONTINUE

IF LARGEST ELEMENT IS ZERO, GO TO ENQ ROUTINE
IF (BIlG] 109,110»10Q9

CHECK FOR NECESSITY OF INTERCHANGE

109 IF [KK = K) 105,1064105

INTERCHANGE ROWS AND COLUMNS

105 DB 107 J=KsN
TEMP = A[KK,J)
A[KKsJ]l = ALKsJ)

107 ALK, J) = TEMP
DO 108 IsKsN
TEMP = ALI,KK]
ALl KK) = AL1sK)

108 Atl,K) = TEMP

DIVIDE WORKING ROW BY MAGNITUDE OF LEADING COEFFICIENT

106 D = ABS[AIK,K])
Do 111 J=KuN
111 A[K,J) = A[K2J1/D

CHECK FOR COMPLETION
IF [K = N} 112,110,112
NOT FINISHED» ANIHILATE WORKING COLUMN

112 KK = K + 1
De 113 1=zKK,N
Do 113 UJ=K,!
Jesl e+ K= Jd
D = A[I,J
ALIsJY s ACI2J] = ALIJKI®ACKIKI®AIKs I

IF THE DIFFERENCE COMPUTED ABBVE IS LESS THAN ONE IN THE
SIXTH SIGNIFICANT PLACE» SET EQUAL TO ZERQ AND NOTE
THIS IN THE OUTPUT
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105 C

106 IF [A[1,J1) 804,113,804

167 304 IF [ABS[ALI,J1/D) =~ 1<0E-06) 801,801,113
108 801 A(I,J] = C.0

109 K = 2

110 113 CONTINUE

111 C

112 C FORM NEW SYMMETRIC MATRIX
113 C

114 Do 102 J=KK,N

115 DO 102 1=Ks»J

116 102 ALl,J) = ALy 1)

117 C

118 C WRITE CONGRUENT FORM

119 C

120 110 PRINT 6

121 6 FORMAT [17HOCONGRUENT MATRIX/J
122 00 115 I=s1»N

123 115 PRINT 4, [AClsJ)»J=12N]
124 C

125 C DETERMINE DEFINITENESS OF THE CONGRUENT FORM AND PRINT
126 C

127 Ki = 1

128 K2 = 1

129 K3 = 1

130 K = 1

131 Kg = 1

132 D8 116 K=1sN

133 IF [A(K,K]) 117,118,119
134 119 K3 = 2

135 Go TO 116

136 118 K = 2

137 K§ = 2

138 GO TO 116

139 117 K1 = 2

140 K2 = 2

141 116 CONTINUE

142 ce TG (120,1213,K1

143 120 GB TC [122,12331,K2
144 122 GO TG ([124,125),K4
145 121 GO TH [126,123],K3
146 126 GO T9 r127,1281,K5
147 123 PRINT 7

148 Go TO 129
149 124 PRINT &
150 Gog 7O 129
151 125 PRINT 9
152 GO TO 129
153 127 PRINT 10
154 Go TC 129
155 128 PRINT 11
156 Go TO 129

157 129 GO TO (802,8031,Ké
158 803 PRINT 12




159
160
161
162
163
164
165
166

PROGRAM

00013
003726
00332
00336
00342

-
O W~

11

Go TO s02

FORMAT [26HOTHIS
FORMAT [33HOTHIS
FORMAT [38HOTHIS
FORMAT [33HOTHIS
FORMAT [38HQTHIS

MATRIX 18 INDEFINITE)

MATRIX IS POSITIVE
MATRIX IS POSITIVE
MATRIX IS NEGATIVE
MATRIX IS NEGATIVE

FORMAT [1HO,$A DIFFERENCE LESS THAN

12

END
ALLBCATION
A 00323 MM
N 00327 1
KK 00333 L
K2 00337 K3
BIG 00344 TEMP

SUBPRIGRAMS REQUIRED

ABS
THE END

00324 NN
0C330 J
00334 JJ
00340 K4
00346 D

DEFINITE)

SEMI=DEF INITE)

DEFINITE)

SEMI-DEFINITE)

1+0E=06 WAS ENCOUNTEREDS]

00325 Ké
00331 K
00335 K1
00341 k5
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